## Känguru der Mathematik 2019 Level Student (Schulstufe 11, 12 and 13) Austria – 21. 3. 2019

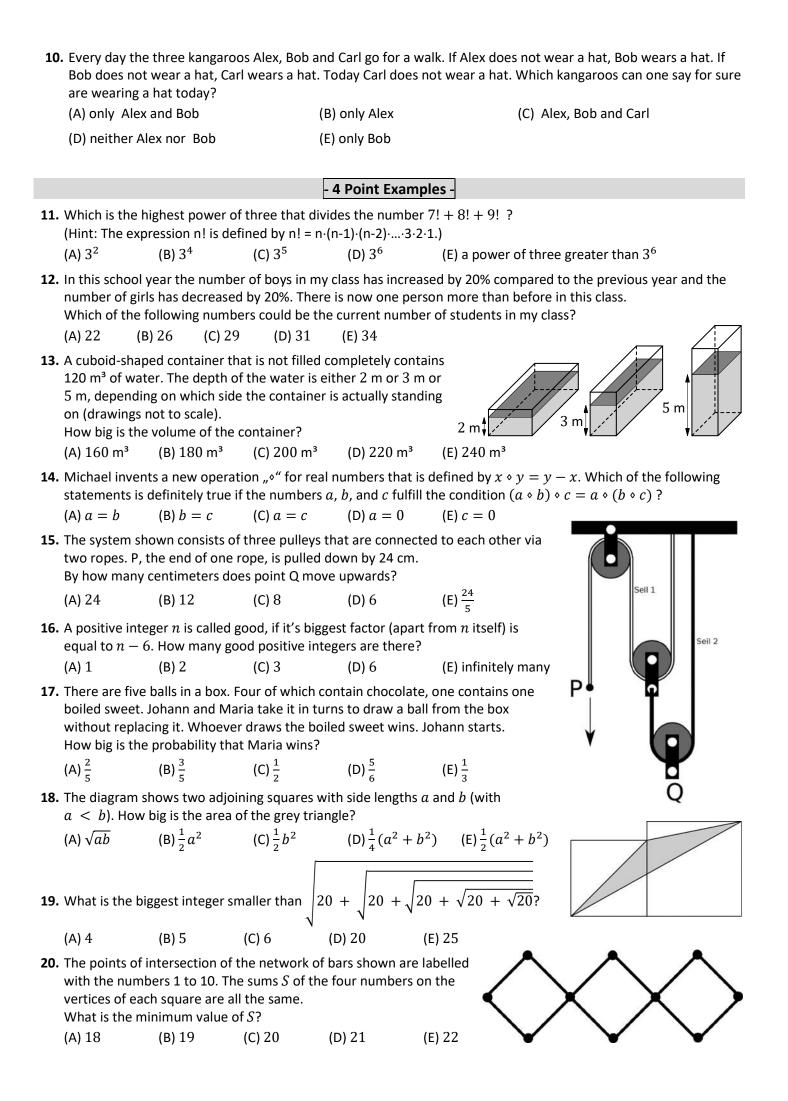


## - 3 Point Examples

|     |                                  |                                       | - 3                                                | Point Example                                                                  | es -                    |                    |                   |   |
|-----|----------------------------------|---------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|--------------------|-------------------|---|
| 1.  | rectangles as                    | shown.                                | _                                                  | s split into three<br>white rectangle<br>(D) 3:7                               |                         |                    |                   |   |
| 2.  | tabl<br>colu<br>big a            | e shown. Then t                       | he sums of the ned. Two of the                     | ifferent cells of t<br>numbers in each<br>se sums are 4 ar<br>(C) 4 and 5      | row and                 | (E) 5 and 6        |                   |   |
| 3.  |                                  |                                       | , ,                                                | as shown. In wh                                                                | ` '                     | • •                | ggest?            |   |
|     | _                                | s are connected<br>le three triangle: |                                                    | s shown. In whic<br>he same way?                                               | h of the follov         | wing               |                   | 7 |
| (A) |                                  | (B)                                   |                                                    |                                                                                | (D)                     |                    | (E)               |   |
| 5.  |                                  | _                                     | · · · · · · · · · · · · · · · · · · ·              | edges does this                                                                |                         | 2?                 |                   |   |
| 6.  | shown. The su<br>picture are his | um of the three<br>dden. Which are    | numbers is 1112<br>the three hidde                 | (D) 48<br>ree separate pie<br>26. Three of the<br>en digits?<br>(D) 4, 5 and 6 | digits in the           | 7 2                | 4 3 1             |   |
| 7.  |                                  | the left, what is                     |                                                    | f the smallest po                                                              |                         |                    | 1                 | 6 |
|     | (A) 2                            |                                       | (C) 4                                              | (D) 5                                                                          | (E) 6                   |                    |                   |   |
| 8.  | How many of (A) 2                | the numbers fro                       | om 2 <sup>10</sup> to 2 <sup>13</sup> (ii<br>(C) 6 | ncluding these to<br>(D) 8                                                     | wo numbers) a<br>(E) 16 | are divisible by 2 | 2 <sup>10</sup> ? |   |

9. Each side of a die is marked with either 1, 2 or 3 dots so that the probability of rolling a 1 is equal to  $\frac{1}{2}$ , the probability of rolling a 2 is equal to  $\frac{1}{3}$  and the probability of rolling a 3 is equal to  $\frac{1}{6}$ .

Which of these pictures cannot be a picture of this particular die?

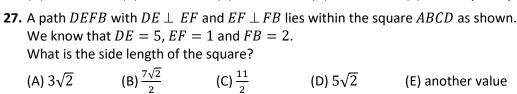




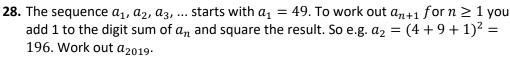




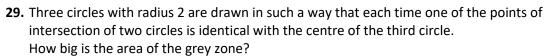



## - 5 Point Examples -

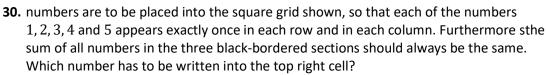

- **21.** Let a be the sum of all positive factors of 1024 and b be the product of all positive factors of 1024. (Hint: 1 and 1024 are also factors of 1024.) Then
  - (A)  $(a-1)^5 = b$
- (B)  $(a+1)^5 = b$
- (C)  $a^5 = b$
- (D)  $a^5 1 = b$
- (E)  $a^5 + 1 = b$
- **22.** Which is the set of all parameters a for which the equation 2 |x| = ax has exactly two solutions?
  - (A)  $] \infty; -1]$
- (B) ] 1; 1[
- (C)  $[1; +\infty[$
- $(D) \{0\}$
- 23. In order to determine the result of the calculation  $\frac{a+b}{c}$  (a, b and c are positive integers), Sara inserts into a calculator  $a+b \div c = \text{and obtains the result } 11$ . Then she inserts  $b+a \div c = \text{and is surprised that the}$ result is now 14. She realises that the calculator follows the rules for the order of operations and does division before addition.

What is the actual result of the calculation  $\frac{a+b}{c}$ ?


- (A) 1
- (B)2
- (C)3
- (E)5
- 24. Consider a cube. How many planes are there that go through at least three vertices of this cube?
- (B) 8
- (C) 12
- (D) 16
- (E) 20
- 25. Four different straight lines go through the origin of the co-ordinate-system. They intersect the parabola  $y = x^2 - 2$  at eight points. What could be the product of the x-co-ordinates of these eight points?
  - (A) only 16
- (B) only -16 (C) only 8
- (D) only -8
- (E) There is more than one possible value.
- **26.** For how many integers n is  $\lfloor n^2 2n 3 \rfloor$  a prime number?
  - (A) 1
- (B)2
- (C)3
- (D) 4
- (E) infinitely many

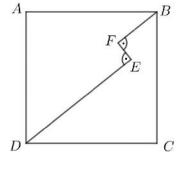


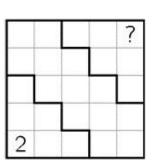





- (A) 121
- (B) 25
- (C)64
- (D) 400
- (E)49







- (B)  $3\pi$
- (C)  $\frac{\pi}{2}$
- (D)  $2\pi$
- (E)  $4\pi$





- (B)2
- (C)3
- (D) 4
- (E)5



